Investigating the association between fine particulate (PM 2.5) from 2017 wildfires in Oregon and rates of hospital admissions for cardiovascular, respiratory and cerebrovascular outcomes

Eleni Mora, MPH; Carol Trenga, MS, PhD; Makenzy Jacobson

Oregon Environmental and Public Health Program at the Oregon Health Authority

Agenda

> Objective

> Methods

Results

Conclusion

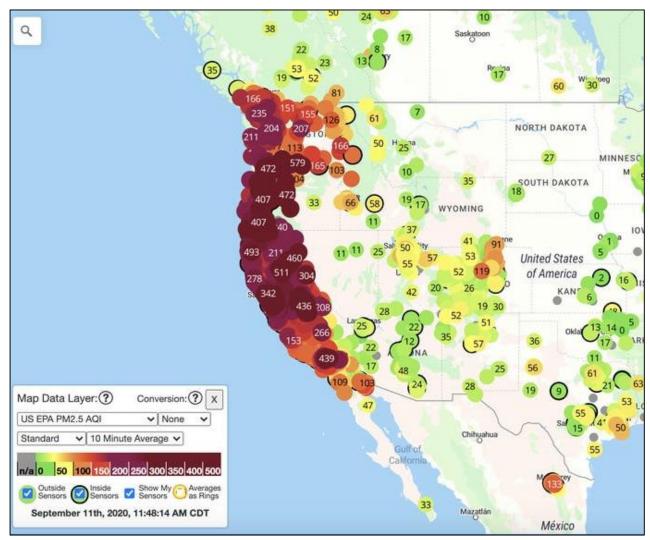


Image source: <u>https://www.insider.com/west-coast-hazardous-air-quality-worst-on-earth-wildfire-smoke-2020-9</u>

Objectives

- The objective of this analysis was to apply a more rigorous statistical investigation to explore the health effects of wildfires in Oregon.
- Method would also ideally be more streamlined and expedient than traditional case-crossover analyses.

<u>NEWS</u>

Chetco Bar Fire: How a small blaze erupted into Oregon's largest wildfire

Zach Urness Statesman Journal Published 7:23 a.m. PT Sep. 29, 2017 | Updated 3:17 p.m. PT Sep. 30, 2017

6 🎽 🖬

Objective – Methods – Results – Conclusion

Health Outcomes

Workgroup identified 21 ICD-10 codes associated with health outcomes suspected to be impacted by wildfires.

Methods

Cardiovascular	Cerebrovascular	Respiratory
 Acute myocardial infarction Arrhythmia Cardiac arrest Heart failure Ischemic heart disease Peripheral vascular disease Pulmonary embolism 	 Cerebrovascular Ischemic stroke/TIA 	 Acute bronchitis Acute lower respiratory infection Asthma COPD Upper respiratory infection

Fine Particulate Matter (PM 2.5)

- Proxy for wildfires
- Documented health effects
- Ongoing questions
 - Dose response
 - Temporal and spatial resolution
 - Species differentiation

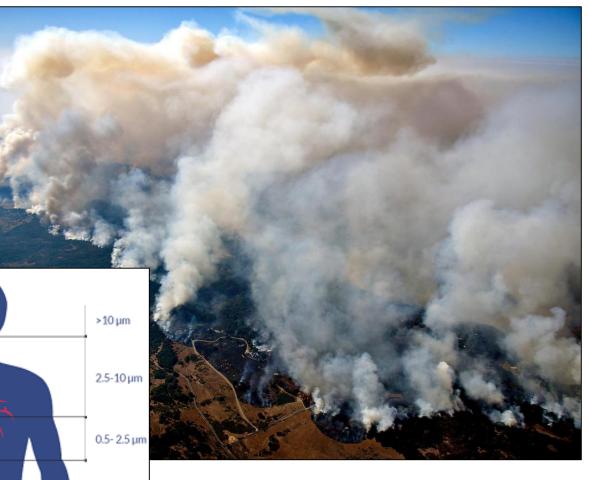


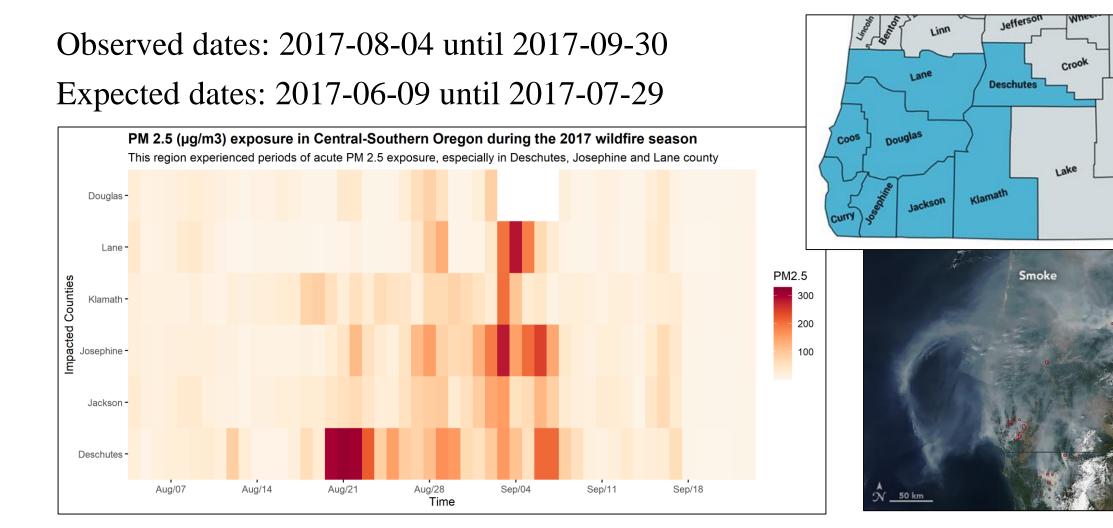
Image credit: https://www.who.int/airpollution/household/pollutants/combustion/en/

Methods


Results

Eagle Creek wildfire

Observed dates: 2017-09-02 until 2017-09-30 Expected dates: 2017-06-03 until 2017-07-01



Map created using mapchart.net Photo credit: US Forest Service

Methods – Results – Co

Central-Southern Conflagration

e – Methods – Results – Conclusio

Our Analysis

 H_0 : PM 2.5 has no effect on count of hospital visits, by county. H_A : PM 2.5 has an effect on count of hospital visits, by county.

Examined this with a Poisson regression:

Methods

$$\left[\frac{count_{observed}}{count_{expected}}\right]_{county} = \beta_0 + \beta_1 [PM \ 2.5]_{obs} + \beta_2 [County \ x] \dots$$

n counties yields n-1 binary covariates for county

Poisson Regression: Eagle Creek

All Respiratory – Emergency Department

Predictors	Adjusted rate ratios	95% CI	P value
Intercept	0.01	0.01 - 0.01	<0.001
Mean Exposure PM 2.5	1.02	1.01 - 1.04	0.007
Washington	4.32	3.08 - 5.97	<0.001
Wasco	0.62	0.02 - 6.35	0.749

Objective – Methods – Results – Conclusio

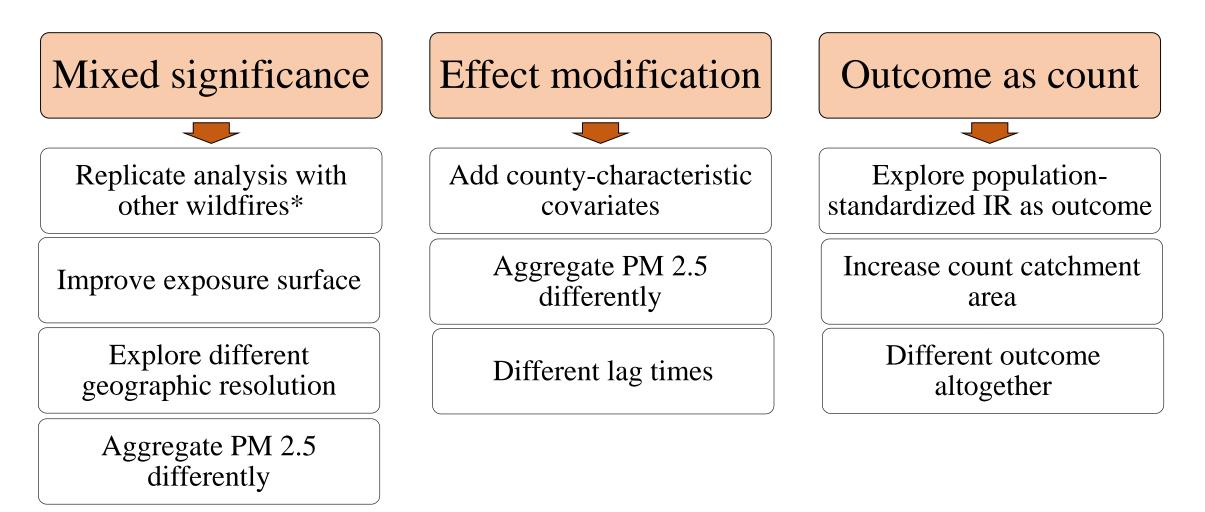
Poisson Regression: Central-Southern

All Cardiovascular – Emergency Department

Predictors	Incidence Rate Ratios	CI	р
Intercept	0.05	0.04 - 0.07	<0.001
Mean PM 2.5	1.00	1.00 - 1.00	0.014
Douglas	4.52	3.08 - 6.66	<0.001
Jackson	1.30	0.94 - 1.82	0.117
Josephine	3.40	2.33 - 4.95	<0.001
Klamath	5.10	3.46 - 7.49	<0.001
Lane	0.05	0.03 - 0.07	<0.001

Objective – Methods – Results – Conclu

Poisson regression: Central-Southern


All Respiratory – Emergency Department

Predictors	Incidence Rate Ratios	CI	р
Intercept	0.19	0.12 - 0.27	<0.001
Mean PM 2.5	1.00	1.00 - 1.01	<0.001
Douglas	0.58	0.34 - 0.98	0.041
Jackson	0.43	0.29 - 0.65	<0.001
Josephine	0.88	0.55 - 1.41	0.585
Klamath	0.66	0.37 - 1.16	0.154
Lane	0.14	0.09 - 0.21	<0.001

Results

Conclusion and Next Steps

Objective – Methods –

Results

Acknowledgements

EPHT Program, Oregon Health Authority

- Carol Trenga, MS, PhD
- Mary Dinsdale, MS
- Curtis Cude, Manager/Principal Investigator
- Entire Oregon EPHT team

Oregon State University

- Makenzy Jacobson, MPH candidate
- Adam Branscum, PhD

Dartmouth College

• Andrew Friedland, PhD

Conclusion

Objective – Methods – Results – Conclusion

Thank you and stay safe

Objective – Methods –

Results

Conclusion